0 Ju l 2 00 7 RANDOM DATA CAUCHY THEORY FOR SUPERCRITICAL WAVE EQUATIONS II : A GLOBAL EXISTENCE RESULT

نویسندگان

  • Nikolay Tzvetkov
  • NIKOLAY TZVETKOV
چکیده

— We prove that the subquartic wave equation on the three dimensional ball Θ, with Dirichlet boundary conditions admits global strong solutions for a large set of random supercritical initial data in ∩s<1/2H (Θ). We obtain this result as a consequence of a general random data Cauchy theory for supercritical wave equations developed in our previous work [6] and invariant measure considerations which allow us to obtain also precise large time dynamical informations on our solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Ju l 2 00 7 RANDOM DATA CAUCHY THEORY FOR SUPERCRITICAL WAVE EQUATIONS I : LOCAL THEORY

— We study the local existence of strong solutions for the cubic nonlinear wave equation with data in H(M), s < 1/2, where M is a three dimensional compact riemannian manifold. This problem is supercritical and can be shown to be strongly ill-posed (in the Hadamard sense). However, after a suitable randomization, we are able to construct local strong solution for a large set of initial data in ...

متن کامل

Local Existence for Semilinear Wave Equations and Applications to Yang-mills Equations

In this work we are concerned with a local existence of certain semilinear wave equations for which the initial data has minimal regularity. Assuming the initial data are in H1+2 and H2 for any 2 > 0, we prove a local result for the problem using a fixed point argument. The main ingredient is an a priori estimate for the quadratic nonlinear term uDu. They can be applied to the Yang-Mills equati...

متن کامل

A Critical Case on the Dirac-Klein-Gordon Equations in one Space Dimension

We establish local and global existence results for a critical case of Dirac-Klein-Gordon equations in one space dimension, employing a null form estimate, a bilinear estimate and a fixed point argument. 0. Introduction and Main Results. In the present work, we like to study the Cauchy problem for the Dirac-Klein-Gordon equations. The unknown quantities are a spinor field ψ : R × R 7→ C and a s...

متن کامل

Existence of Weak Solutions to the Cauchy Problem of a Semilinear Wave Equation with Supercritical Interior Source and Damping

In this paper we show existence of finite energy solutions for the Cauchy problem associated with a semilinear wave equation with interior damping and supercritical source terms. The main contribution consists in dealing with super-supercritical source terms (terms of the order of |u|p with p ≥ 5 in n = 3 dimensions), an open and highly recognized problem in the literature on nonlinear wave equ...

متن کامل

ar X iv : 0 70 7 . 18 02 v 2 [ nl in . S I ] 1 3 Ju l 2 00 7 On the solutions of the dKP equation :

We have recently solved the inverse scattering problem for oneparameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev Petviashvili (dKP) equation. We showed, in particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007